

3D Seismic Traveltime Tomography Validation of a Detailed Subsurface Model: The case study of the Zancara River Basin

- 3 (Cuenca, Spain)
- 4

7

5 David Marti¹, Ignacio Marzan¹, Jana Sachsenhausen¹, Joaquina Alvarez-Marron¹, Mario Ruiz¹,
6 Montse Torne¹, Manuela Mendes² and Ramon Carbonell¹

- 8 ¹ Institute of Earth Sciences Jaume Almera, ICTJA, CSIC, Lluis Solé I Sabaris s/n, 08028, Barcelona, Spain
- 9 ² Department of Physics, Instituto Superior Técnico, IST, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence to: David Marti <u>dmarti@ictja.csic.es</u>
- 12 13

14 ABSTRACT

15

16 A high-resolution seismic tomography survey was acquired to obtain a full 3D P-wave seismic velocity image in the Zancara River Basin (east of Spain). The study area consists of lutites and gypsum from a Neogene sedimentary 17 18 sequence. A regular and dense grid of 676 shots and 1200 receivers was used to image a 500x500 m area of the shallow 19 subsurface. A 240-channel system and a seismic source consisting of an accelerated weight drop, were used in the acquisition. Half million traveltime picks were inverted to provide the 3D velocity model that allowed to resolve the 20 21 structure up to 120 m depth. The project targeted the geometry of the underground structure with emphasis in defining the lithological contacts but also the presence of cavities and fault/fractures. An extensive drilling campaign provided 22 23 uniquely tight constraints on the lithology; these included core samples and wireline-log geophysical measurements. 24 The analysis of the well-log data enabled the accurate definition of the lithological boundaries and provided an estimate 25 of the seismic velocity ranges associated to each lithology. The final joint interpreted image reveals a wedge shaped 26 structure consisting of four different lithological units. This study features the necessary key elements to test the 27 traveltime tomographic inversion approach in the high-resolution characterization of the shallow subsurface. In this 28 methodological validation test, traveltime tomography demonstrates to be a powerful tool with a relatively high capacity for imaging in detail the lithological contrasts of evaporitic sequences located at very shallow depths, when 29 30 integrated with additional geological and geophysical data.

31

32 1. INTRODUCTION

33

34 Knowledge of the very shallow structure of the Earth has become a critical demand for the modern society. The shallow 35 subsurface is the part of the Earth with which humans have the most interaction. Characterizing the subsurface is 36 important since it hosts critical natural resources; it is used as reservoir for resources and waste, plays a key role in 37 support of infrastructure planning and holds the imprint of the anthropogenic processes. Thus, understanding its 38 composition and structure is a regular objective in studies such as: natural resource exploration [Davis et al., 2003; 39 Place et al, 2015] and environmental assessment studies [Steeples, 2001; Zelt et al, 2006)] It is also critical in civil 40 engineering practice and monitoring of underground structures [Escuder-Viruete et al., 2003; Malehmir et al., 2007; Juhlin et al., 2007; Martí et al., 2008; Giese et al., 2009; Alcalde et al., 2013a]. In addition, the implementation of a 41 competent subsurface exploration scheme is very valuable for assessing and/or providing detailed site characterization 42 43 for addressing natural hazards, e.g., seismic hazard [Samyn et al. 2012; Ugalde et al., 2013; Wadas et al., 2017; Bernal et al., 2018]. Typical geotechnical practice for subsurface exploration has often relied on a combination of drilling, in 44 45 situ testing, geophysical surveys, and laboratory analysis of field samples [Andara et al., 2011; Kazemeini et al., 2010; 46 Alcalde et al., 2014].

47

48 Geophysical techniques provide a great variety of approaches to accurately describe the structure, and the distribution of 49 different physical properties in the subsurface. Depending on the target depth and the required spatial resolution 50 different methodologies can be applied [e.g. Bryś et al., 2018; Novitsky, et al., 2018; Malehmir et al., 2009 and 2011; 51 Escuder-Viruete et al 2004; Carbonell et al., 2010; Ogaya et al., 2016; Andres et al. 2016, Alcalde et al., 2013b]. Since 52 the late 90's sophisticated geophysical techniques have been developed to estimate near-surface velocity models as a 53 proxy for subsurface stiffness in seismic applications with different targets [Bergman et al., 2004 and 2006; Heincke et

al., 2010]. Seismic traveltime tomography is a robust, efficient and well contrasted tool to constrain the rock's physical
properties at very shallow depths [Yordkayhun et al., 2009b; Flecha et al., 2004; 2006; Marti et al., 2002a; ; BaumannWilke et al., 2012]. When seismic data is densely acquired it can provide very high spatial resolution images even in 3D
at a much affordable cost than conventional 3D seismic reflection surveys. In areas where the geology has not
particularly internal structural complexity and with moderate lateral lithological variability, traveltime tomography can
provide a reliable image of the subsurface [Marti et al., 2002b; 2006; Yordkayhun et al., 2009a; Letort et al., 2012;
Baumann-Wilke et al., 2012]

61

The study area, in the Loranca Bansin (Cuenca, Spain), has been considered as a possible host for a singular facility for 62 temporary storage of radioactive waste. The emplacement of such a facility requires an extensive multi-scale, multi-63 disciplinary knowledge of the site's subsurface [Witherspoon et al., 1981; IAEA 2006; Kim et al. 2011], including a 64 65 detailed 3D image of the structure and the distribution of its physical properties, specially focused on the upper hundred meters which directly interact with the ongoing construction works. The available data suggests that the sedimentary 66 67 sequence in the study area presents certain tilting to the west, with no significant faulting and therefore no great 68 structural complexity is expected in the shallow subsurface. Following similar case studies on very shallow site 69 characterization, traveltime tomography was considered as the most adequate geophysical method to provide constraints 70 on the seismic velocities for the 3D baseline model [Martí et al., 2002b; Juhlin et al., 2007; Yordkayhun et al., 2007].

71

A very dense source-receiver grid was designed to assure the necessary lateral resolution and depth coverage of the 72 73 seismic data, to constrain the geological features of interest beneath the construction site. The specific target was to 74 resolve in detail the internal geometry of a mostly gypsiferous succession with diffuse lithological boundaries 75 [Martinius et al., 2002; Diaz-Molina and Muñoz-Garcia, 2010; Escavy et al., 2012;]. The inversion of almost half a 76 million first arrival traveltime picks provided a 3D distribution of the P-wave velocities. This combined with borehole 77 information allowed to fully characterize three main lithological units and constrain the interpretation of the velocity 78 model. Borehole information was instrumental to define the specific 3D geometry of the different lithologies in the 79 tomographic model and, the topography of the complex boundaries.

80 81

82 2. GEOLOGICAL SETTING

83

The area of Villar de Cañas (Cuenca, Spain) is included in the Loranca Basin, in the southwestern branch of the Iberian Chain (Fig. 1a). The Iberian Chain corresponds to a wide mostly east-southeast trending Alpine intraplate orogen in the eastern Iberian Peninsula. The structure consists of a thin-skinned, west-verging, mostly imbricate thrust system and associated fault-propagation folds that deform a Mesozoic and Cenozoic sedimentary cover detached above the Paleozoic basement [Muñoz-Martín y De Vicente, 1998; Sopeña y De Vicente, 2004]. The thrust faults merge at depth into a basal detachment located within Middle-Upper Triassic sequences [Piña-Varas el al, 2013].

90

The crustal structure of the Iberian Chain has gathered academic interest since the early 1990's [see Seille et al, 2015; 91 92 Guimerà et al., 2016 and references therein], including the acquisition of local and regional geologic and geophysical studies of the Loranca Basin [Biete et al., 2012; Piña-Varas et al., 2013]. The Loranca Basin comprises syntectonic 93 94 Cenozoic strata [Guimerà et al., 2004]. It has been interpreted as a piggy-back basin that evolved during the Late 95 Oligocene-Early Miocene period and includes mostly fluvial and lacustrine facies sediments, organized into three major 96 alluvial fan sequences and their associated flooding plains (Diaz-Molina and Tortosa, 1996). The alluvial fans were fed 97 from the southeastern and western boundaries of the basin and were comprised of mostly sandstones, gravels, 98 mudstones, limestones and gypsum. Towards the center of the basin, in the most distal areas, mainly lakes, mud flats 99 and salt-pans sedimentary facies associations developed. The evaporitic sequences targeted in this study were deposited 100 in these distal sedimentary environments.

101

102 The three large alluvial fans that build up the sedimentary infill of the Loranca Basin have been divided into three 103 stratigraphic units named Lower, Upper, and Final Units (Figure 1). The Lower Unit was deposited during the Upper 104 Eocene-Oligocene, during the initiation of thrusting along the Altomira Range. The Upper Unit includes mostly humid 105 conditions, alluvial fan sedimentary facies at its base (Upper Oligocene-Lower Miocene), which have been described as 106 the First Neogene Unit. Up until this period, the sedimentary sequences that are now isolated within the Loranca Basin were part of a much larger syntectonic Cenozoic basinal area in the center of Iberia, the Madrid Basin (Vegas et al., 107 1990; Alonso-Zarza et al., 2004; De Vicente and Muñoz-Martín, 2013). During sedimentation of the top of the Upper 108 109 Unit, the Loranca basin became endorheic due to its disconnection from the Madrid Basin, related to the emergence of 110 thrusts and formation of a topographic barrier along the Altomira Range (Diaz Molina and Tortosa, 1996). The endorheic sedimentary reorganization was associated with the establishment of much arid conditions in the region, 111 112 during sedimentation of the Second Neogene Unit sequences. This unit includes four saline/evaporitic sequences

including saline clayey plains and marginal lacustrine environments, well developed in the central part of the Villar de
 Cañas Syncline, and that correspond to the area of our tomographic survey. The Final Unit of the Loranca Basin is not
 present within the Villar de Cañas Syncline.

116

117 In the Villar de Cañas Syncline (Figure 1b), the Cenozoic sedimentary sequences are separated from each other by low angle unconformities. In particular, the outcropping Lower and Middle Miocene sediments of the Second Neogene Unit 118 are surveyed by our study (Figure 1c). They are described as the Balanzas series, made up from bottom to top by the 119 Balanzas Gypsum (Y) and the Balanzas Lower lutites (LT). The Y includes several types of gypsums alternating with 120 lutites/shales that have been grouped in three units: i) macrocrystalline and laminated gypsums (Y1); ii) gypsum, 121 shales/lutites and marls (Y2); and iii) gypsum with shaly-marly levels and gypseous alabaster (Ytr) (Figure 1). The LT 122 123 crops out in the core of the Villar de Cañas syncline and contains red siltstones and mudstones with some gypsum 124 and/or sands (Figure 1).

125

126 According to the Second Neogene Unit sequence, gypsum rocks are the main lithological target in the study area. The 127 definition of their internal structure and the boundaries between the different sequences are often difficult, considering the heterogeneity of these deposits. Gypsum (CaSO₄·2H₂O) is frequently affected by diagenetic processes and, as a 128 129 consequence, gypsum rocks include clay, carbonates and other minerals. The presence of other minerals affects the 130 purity of the gypsum rocks and this is reflected in changes of its physical properties potentially measurable with geophysical methods [Carmichael, 1989; Guinea et al., 2010; Festa et al, 2016]. However, their variability in 131 132 composition and their complex geometry make the characterization of these deposits challenging [Martinius et al., 133 2002; Diaz-Molina and Muñoz-Garcia, 2010; Escavy et al., 2012; Kaufman and Romanov, 2017]., In this case, the 134 high-resolution seismic characterization of the site was designed taking into account all these structural and lithological 135 constraints.

136

137 3. DATA ACQUISITION AND PROCESSING

138

139 To provide a detailed image of the target site shallow subsurface, we designed a dense 3D tomographic survey to ensure 140 a high spatial resolution. The approximately regular acquisition grid covered an area of 500x500m. Source locations were distributed in a grid of 20x20 m cells. Receivers were distributed along profiles oriented east-west, with 20m 141 142 spacing. Along each line, 48 receivers were distributed with a receiver spacing of 10 m (Figure 2). The seismic source 143 consisted in a 250 kg accelerated weight drop. The seismic data acquisition system consisted in ten 24 channel GEODE 144 ultra-light seismic recorders (Geometrics systems) that resulted in a 240-channel system. Each channel included a 145 conventional vertical component geophone. With the available instrumentation, the acquisition scheme required 5 146 swaths to cover the entire study area. Each swath consisted in five active receiver lines (240 channels), a total of 676 147 source shot positions resulting in a total of 3380 shot gathers. The survey was acquired and completed in two different 148 time periods (December 2013 and January 2014). The acquisition program was carefully adapted to account for the 149 special circumstances associated to the acquisition of different swath at different times, with different environmental 150 conditions (e.g. different level of ambient noise, weather changes, or potential technical problems in acquisition equipment). One of the main concerns was to ensure the release of enough acoustic energy for all the available offsets, 151 152 especially in presence of complicated weather conditions. The 250 kg accelerated weight drop source ensured high 153 signal-to-noise (S/N) ratios in most of the shot points (Figure 3). However, some of them required repettion of the shot 154 to improve the S/N ratio by means of raw data stacking. Despite the complexity of the seismic acquisition, the recorded 155 seismic data was of high quality and high S/N ratio and allowed a well-defined picking of first arrivals (Figure 3) corresponding to almost all the offset range, reaching maximum offsets of almost 700 m. The high quality of the seismic 156 first arrivals favored the semi-automatic picking of more than a half million of first breaks. 157

158

159 The algorithm used with this data (Pstomo_eq) is a fully 3D traveltime tomographic inversion code [Benz et al., 1996; 160 Tryggvason et al 2002]. The forward modeling is a first-order finite-difference approximation of the eikonal equation, computing all the time field from a source (or receiver) to all the cells of the model (two different schemes are available 161 162 based on Hole and Zelt, [1995] and Tryggvason and Bergman, [2006]). The traveltimes to all receiver or source positions are computed from the resulting time field and raytracing is performed backwards, perpendicular to the 163 isochrons [Vidale, 1998; Hole 1992]. The inversion is performed with the conjugate gradient solver LSQR [Paige and 164 165 Saunders, 1982]. One of the main requirements for a successful inversion is the selection of an appropriate initial model 166 [Kissling, 1988; 1994]. A good approximation to the minimum starting model is the use of the *a priori* information 167 available for the area, based on the surface geology and/or the geophysical data previously acquired. In our case, an initial 1D model was built based on the sonic log information available for different boreholes located within the study 168 169 area (Figure 2). The shallow target of the tomographic experiment and the well-controlled sedimentary sequence 170 expected at these depths, with a non-complex laterally changing geology, favored the election of very suitable initial 171 models.

172

173 The particular acquisition pattern carried out in different swaths forced to establish a careful quality control over the 174 data. These factors may introduce some bias to the first arrivals picks (Figure 3) that could affect the convergence of the inversion algorithm. To avoid any potential error associated to the different conditions during the acquisition we decided 175 to invert all the swaths independently to check the data quality and their convergence. Once convergence was tested in 176 every swath, the other swaths were gradually added into the inversion. This resulted in a relevant improvement on the 177 178 lateral resolution and a better definition of the final velocity model. The inversion of single swaths was also used to test 179 the dependence of the result on the choice of initial models. Different initial 1D velocity models based on the previous 180 geophysical and geological information were built to analyse the consistency with the first break picks and the robustness of the inversion. The best fitting 1D model chosen provided an RMS reduction of 93% showing a clear 2D 181 182 trending geometry in the east-west direction. Taking into account this feature, that was also observed in the surface 183 geology (Figure 1 and, 2), as well as the borehole information, an initial 2D velocity model was built. This initial model was then used to speed up the convergence of the calculations and to reduce the number of iterations needed to 184 185 reach the optimal final RMS misfit.

186

187 The inversion cell size decreased during the integration of the first arrival picks corresponding to the different swaths. 188 Due to the sparse distribution of receivers in the north-south direction the cell size corresponding to this direction was 189 the most sensitive to the addition of new traveltime picks to the inversion. Obviously, the reduction of the inversion cell 190 size was also relevant to increase the resolution of the final velocity model, resulting in a final inversion grid spacing of 10x20x5 m (for x, y and z).

192

193 4. RESULTS

194

195 The inverted final velocity model shows a detailed image of the shallow subsurface of the study area (Figure 4). This model provides the best fitting result featuring a final RMS traveltime residual of 2.5 ms, which is indicative of the 196 197 good convergence of the inversion process. According to the raypath coverage obtained during the inversion, the velocity model retrieves the internal structure of the subsurface with a maximum depth of 120 m (Figure 4), especially 198 in the central and western sector of the survey. This recovering depth decreases drastically towards the east. This was 199 200 partly due to the usual ray coverage decrease close to the boundaries of the survey but also to other different causes. The 201 lateral changes in surface geology in this sector affected seismic source coupling reducing the overall energy injected in 202 the subsurface and affecting the seismic source repeatability. This issue hindered the identification of the first arrivals in 203 a wide range of offsets for the shot points located in the eastern part of the study area (Figure 4). Furthermore, the high 204 velocity gradient observed at very shallow surface also affects the depth of the traced ray paths.

205

The direct observation of the 3D P-wave velocity model reveals several interesting features about the shallow 206 207 subsurface and its internal structure. The tomographic model shows that the shallowest subsurface (first 5-10 m) is 208 characterized by a very low seismic velocity. This upper layer seems to have a relatively constant depth for the entire 209 study area. Beneath, there is a velocity gradient smoother towards the northwest, slightly increasing to the south and 210 significantly to the east (Figure 4). This effect is remarkable in the northeast corner of the study area, where the velocity 211 rise from 1000-1200 m/s in the shallow surface to up 4000-4500 m/s in the first 20-30 m (Figure 4). This results in a 212 wedge geometry of the velocity model, indicating a clear northwest dipping trend of the main structural features. 213 Another significant result is the lateral changes in velocity observed in the deepest part of the model which could 214 suggest the presence of lateral lithological changes..

215

Different checkerboard tests were carried out to estimate the potential resolution of the final velocity models obtained 216 217 in the tomographic inversion (Figure 5). These sensitivity tests provide a qualitative estimation of the spatial and depth 218 resolution and the uncertainty of the experimental design used. The main idea is to test how well the acquisition 219 geometry (distribution of sources and receivers) is able to recover a regular distribution of velocity anomalies. 220 Checkerboard tests only provide indirect evidence of these measures [Lévêque et al., 1993; Rawlinson et al., 2016]. 221 These tests illustrate where, or what parts of the subsurface models are best resolved. The information that these tests 222 reveal is similar to the resolution and covariance matrix measures obtained by other conventional schemes. For 223 example, covariance matrix methods in LSQR [Yao et al., 1999] give incomplete information, especially when sources 224 and receivers are located at surface. In this case, the raypaths are strongly dependent upon the velocity gradient which 225 implies a significant non-linearity [Bergman et al., 2004; 2006]. Keeping that in mind, several tests, including using 226 different size of the anomalies, were applied to our data. Two different sections, one east-west and one depth slice, 227 representative of the complexity of the study area, have been selected to illustrate the results of the checkerboard analysis (Fig. 5). First of all, an east-west section located at the center part of the tomographic 3D volume shows that 228 229 the velocity anomalies are retrieved for the first 100 m in almost all the study area, slightly reducing its depth of

230 penetration close to the eastern sector. This fact was expected, due to the lower quality of the first arrivals of the shots 231 located in this area. The traveltime picking carried out in this area were very limited in offset, which clearly impeded to 232 reach deeper exploration depths. On the other hand, a section at constant depth shows a very homogeneous distribution 233 of the anomalies recovered of the checkerboard test. At 45-50 m depth the resolution analysis assures that the ray 234 coverage is homogeneous and well distributed throughout the entire surface. The least covered area corresponds to the north and the southwest part. Although these areas corresponds to the boundaries of the study areas, where lower 235 236 resolution is expected, technical problems with the geophone cables forced us to disconnect 24 of the 48 channels in the 237 northernmost receiver line and 12 channels in the southwestern sector in four receiver lines in a row. In spite of these acquisition issues, the checkerboard analysis demonstrates the capability of our experimental system/device to image 238 239 with sufficient detail the shallow subsurface.

240

241 4.1 Velocity model interpretation

242

Despite the velocity model provides a detailed image of the shallow subsurface, a direct geological interpretation is difficult, especially in terms of structural features. Interval velocities from sonic logs are critical for a realistic interpretation of the 3D tomographic model so that the internal structure of the shallow subsurface can be geologically inferred.

247

248 As mentioned above, the study area was covered by an extensive borehole drilling campaign (including geotechnical 249 and geophysical boreholes with core sampling) and a very detailed surface geology mapping which provided the 250 necessary information to properly decode the geological meaning of the P-wave velocity model. Within the study area 251 only four geophysical equipped wells were available, and used to guide the interpretation of the velocity model (boreholes: SG-29, SG-30, SG-28 and SVC-6, shown in Figure 6). The sonic logs, the tailings and the core samples 252 253 were critical in linking the different lithologies to the geophysical responses. The lithology and the tomographic image 254 were linked by correlating the velocity profiles obtained from the tomographic model with those determined from the 255 sonic logs. This correlation required a homogenization so that the scales of resolution of both methods would be 256 comparable. The 3D tomographic images are built as velocity grids with cell dimensions of 10x20x5m (x, y, z). This 257 indicates that the sampling interval in the vertical (z) direction is 5 m, while the sample rate in the z axis of the logs is on the cm scale. Thus, the Vp logs needed to be re-sampled to provide average interval velocities in 5 m intervals, 258 259 representative of the average lithology within this interval. Two resampling approaches were tested. First the log was 260 averaged using a 5 m averaging window, and then re-sampled in 5 m intervals (Figure 4); window lengths from 2.5 to 261 10 m were also tested, but provided similar results. A median filter approach, that avoids extreme values, was also 262 evaluated, providing a similar response, so the 5m interval average method was finally selected. This homogenization 263 step assured that scale-lengths of the features observed in both data sets were comparable.

264

The information derived from the well logs provided constraints to interpret up to nine lithological sub-units (Figure 6). However, the relatively reduced overall depth coverage of the tomographic image makes that only four of these units may be identified in the velocity model (Figure 4, and 6). Characteristic lower and upper limits as well as average seismic propagation velocities for P-waves were estimated for each different lithological unit using the sonic log measurements, resulting in the table scale shown in Figure 6.

270

271 The gamma ray logs are the most complete logs in the available boreholes, which makes them crucial to define the first 272 lithological boundary at depth (Figure 6). The velocity data is sparser than the gamma ray data, and only the borehole 273 SVC-6, located in the center part of the study area (Fig. 2), provides an almost complete velocity log as a result of the 274 combination of the downhole data and the sonic log. The analysis of the well data differentiates a first upper layer that 275 according to the core samples corresponds to the Balanzas Lower lutites (LT). This sedimentary rock consists mostly of 276 clay minerals with large openings in their crystal structures, in which K, Th and U fit well. This fact makes the gamma 277 ray measurements ideal for its identification because they are very sensitive to the presence of natural radioactivity. A 278 sudden decrease of the gamma ray values clearly defines the transition to a new lithology (Figure 6). The direct 279 observation of the SVC-6 velocity log shows two well distinguished sections characterized by different seismic 280 velocities. The recorded values are relatively low (< 2000 m/s) for the first 10-12 m, with a sudden increase at this depth up to 2200m/s, keeping this velocity relatively constant until the transition zone (~24 m) (Figure 6). The boundary with 281 282 the deeper formations is observed in Vp with an gradual increase in the velocity values close to 3000 m/s, that takes 283 place in a fewmeters indicating a smooth transition in terms of velocities. From the log analysis it can also be derived 284 that the thickness of the LT layer is almost constant in north-south direction in the central part of the study area (around 285 20 m depth in SG-28, SG-30 and SVC-6)), increasing its thickness to 32 m in the western sector in which SG-29 is 286 located. The lack of logging information in the Eastern part of the study area forces the interpretation to rely solely on 287 the information from the surface geology (Figure 2) The geological map shows the presence of this lithological 288 interface located in the eastern sector of the study area, with an approximate orientation N-S being sudden moved to the

289 West in the middle part of the study area. This interface puts in contact the lutites layer with the next lithology identified 290 in the core samples. This fact suggests that the layers dip gently to the West supporting the wedge geometry observed in 291 the tomographic model and following the regional scale geologic interpretations [Biete et al 2012; Piña-Varas et al., 292 2013].

293

294 Just beneath the LT layer, the core samples show the presence of a gypsum-lutite transition layer of nearly constant 295 thickness in most of the study area (at least where the logging information is available) with a local increase in 296 thickness in the Western sector. This unit, called Ytr, belongs to the Second Neogene unit and is characterized by mainly gypsum with centimetric to metric intercalations of shaly/marly levels. These lithological changes are 297 298 characterized by a high variability in the recorded sonic and gamma ray log values. The presence of these gypsiferous 299 shales are clearly observed in the gamma ray logs, featuring high peaks related to the shaly intercalations. In the sonic 300 logs, the velocity seems to increase in the upper part of the unit with a decrease that coincides with higher presence of 301 the shaly-marly levels (increase in the gamma ray log): Close to the transition to the next lithology, t he sonic log seems 302 to recover the velocity values observed in the upper part.

303

A great increase in the velocity together with a sudden decrease in the gamma ray values indicates the transition to a 304 305 thick lithological sequence of gypsum in depth. In terms of borehole logging several subunits can be inferred according 306 to the different signatures observed. However only two of these gypsum units, defined in the geological setting, can be 307 observed/correlated in the tomographic model taking into account the depth achieved with the acquisition geometry 308 used. The upper unit (Y1) is defined by higher values of seismic velocities (~4250m/s) than the deeper unit (Y2) (~3800m/s). 309

310

311 The identification of the main lithological units by means of the logging data and the core samples provides a solid link 312 between the geology and the physical properties that allow us to lay out a structural interpretation the 3D tomographic volume. The standard deviation of every averaged velocity value was used to estimate a rough velocity range 313 314 corresponding to each lithology but also provided a measure of the quality of the assigned velocity to the different 315 lithologies. This criterion was then used to correlate each P-wave velocity value of the mesh to the defined lithologies (Figure 7). Looking at the velocities table, the LT layer seems to be the most well-established value, according to the 316 standard deviation obtained, which is the lowest (90 m/s). Nevertheless, that this layer was defined only by using the 317 318 deeper portion of the log data corresponding to this section, which probably corresponds to the higher velocities for this formation neglecting the low values that should be expected at shallow depths due to weathering, unconsolidation etc. 319 320 which will significantly increase the standard deviation. This is the case of the Ytr laver which features a standard 321 deviation of 400 m/s which clearly reflects the high variability of the seismic velocities observed in the sonic logs.

322

323 This velocity analysis allowed us to re-image the tomographic velocity model, this time assigning the different 324 lithologies to the assigned velocity ranges observed in the well log data (Figure 7 and 8). In this way, we could map the four lithological units within the velocity model, clearly defining their respective boundaries and other structural 325 326 features which characterize the shallow subsurface of the test site.

328 5. DISCUSSION

329

327

The direct observation of the different lithological domains identified in the guided interpretation reveals several 330 331 interesting general features (Figure 8). The defined upper boundaries feature an undulating character that reveals channel-like structures with an east-west orientation. Note that the sedimentary environment during Upper Oligocene-332 333 Lower Miocene was meander set up [Diaz-Molina, 1993]. Furthermore, the LT and the Ytr layers appear to increase 334 their thickness towards the west keeping it constant in the north-south direction (Figure 7, 8 and 9) which indicates that the gypsum layers are dipping towards the west. This coincides with the wedge geometry clearly observed in the 335 tomographic velocity models (Figure 4 and 7). The latter was also suggested by the regional scale geology and other 336 geophysical studies [Biete et al., 2012; Piña-Varas et al., 2013]. 337

338

339 In order to validate the accuracy of the logging guided interpretation of the tomographic model, several 2D velocity 340 sections in depth were extracted following different existing east-west and north-south geological profiles. Those selected profiles corresponds to geological cross-sections based on data collected at surface and the interpretation of the 341 342 core samples. Besides, the interpreted boreholes used in this study were also projected to the closest profiles, thus 343 providing additional information to compare and evaluate the final structural interpretation of the 3D velocity grid.

344

The definition of the different lithological boundaries was one of the main objectives of this study. In this sense, the 345 346 resulting images show a general good agreement between the geological cross-sections, the interpreted boreholes and

347 the tomographic models, in terms of boundary definitions, geometry and depth throughout all the 3D volume (Figure 9). 348 The matching between hard data (surface geology plus well-log data) and soft data (seismic tomography) is very consistent taking into account the different criteria used and resolution to define the lithological changes in depth. The 349 350 correlation between both interpretations is particularly significant in the central part of the study area, where the 351 lithological boundaries defined in the geological cross-sections even show changes in dip and undulating geometries also retrieved by the seismic velocity models. In those areas, the comparison between the interpreted boreholes 352 353 projected to the velocity profiles is also in good agreement (Figure 9). Nevertheless several discrepancies are observed 354 in specific areas, specially located on western and eastern ends, affecting to different lithological layers, which need to 355 be addressed in detail to finally validate the tomographic models.

356

357 From depth to surface the first units identified are Y1 and Y2 (Figure 8). From the previous geological analysis, this 358 gypsum units are characterized by a complex internal structure with no clear defined boundary, continuous lateral 359 changes and the presence of widely disperse massive gypsum bodies. The tomographic model seems to corroborate this 360 by showing a quite complex distribution of these two units in the 3D velocity volume. Unfortunately, the depth resolution of the tomographic model together with the velocity inversion observed between the Y1 and Y2 (Figure 4) 361 makes very difficult to provide a reliable retrieval of the seismic velocities associated to each lithology. This issue is 362 363 well described in the literature, such as in the one described in Flecha et al. (2004). These aspects together with the 364 smooth character of the seismic tomography leads to consider these gypsum units as a unique lithology, focusing in the 365 upper boundary definition and avoiding the definition of the complex internal structure. Besides, this objective was 366 beyond the scope of the study and from an engineering point of view, both lithological units can be considered as one 367 unit in terms of mechanical response.

368

369 The upper limit between Y1+Y2 (Y) and Ytr is relatively well constrained in almost all the area, especially when 370 compared with the log interpretation. Changes in dip and variable geometries in depth observed in the geological crosssections are also imaged by the guided interpretation of the 3D velocity model (Figure 9). The well contrasted seismic 371 372 velocities between both lithologies observed in the well logs help in the boundary definition, although the previously 373 mentioned limitations of seismic tomography for these lithologies makes impossible to reach the seismic velocity 374 ranges expected for the gypsum units according to the logging data (Figure 4). The tomography velocity model suggests 375 the velocity inversion in some of the profiles (i.e. profile c9i in Figure 9). The tentative interpretation of the Y1 376 (Gypsum 1 in Figure 8) clearly does not correspond to this lithology which should be the unit defining the upper 377 boundary of this gypsum sequence; however it is presented in the results because is indicative of the presence of these 378 isolated massive gypsum bodies that are observed and well defined especially in the eastern sector of the study area, 379 some of them very close to the surface.

380

Quite different is the LT-Ytr boundary definition which seems to be underestimated in depth location as we move to the 381 382 western sector of the survey area (Figure 9). Several considerations can be taken into account to understand this 383 mismatch observed between different interpretations. First, this lithological boundary is relatively diffuse because of the presence of the gypsiferous lutites as intercalations distributed within the gypsum rock. This fact is the cause of the 384 appearance of peaks of higher velocity in the sonic logs which are responsible for the increase in the average velocity 385 386 for the Ytr unit. Unfortunately, due to the acquisition geometry, the resolution that characterizes the tomographic model 387 is not able to differentiate between these intercalations/interfingering (lenticular shape layers of centrimetric to metric 388 scale) within Ytr which would have helped to define this boundary in greater detail. As mentioned above, we resampled 389 the velocities from sonic logs to correalte their velocities to the tomography results As a result, the averaged velocity 390 associated to Ytr is characterized with a high standard deviation (Figure 6 and 8). This increases the uncertainty of Ytr 391 identification in the whole tomographic 3D volume which induces some mismatch in the unit identification.

392

393 On the other hand, the location of the boreholes used for the guided interpretation of the tomographic model also can account for these observed discrepancies. Most of them (SG-28, SVC-6 and SG-30) are located in the central part of the 394 395 study area and besides they are aligned in the north-south direction. Thus, the weight of these three boreholes in the 396 estimation of the velocity intervals in both lithologies involved is significant and introduces a bias for the rest of the 397 tomography guided interpretation. According to these wells, the lutites have a quite similar thickness placing the 398 lithological boundary at a relatively shallow depth (around 20 m) compared with the same boundary in the western area 399 which is located at a deeper level. This implies that the velocity derived from the boreholes for the LT layer is most 400 probably underestimated in relation to the expected velocities for this lithology at this part of the survey. The effects of the soil compaction, due to the layer thickening in this sector, could increase the velocity of the lutites at depth. This 401 402 fact but also the standard deviation associated to the Ytr unit seems to be a strong effect in the delimitation of this upper 403 boundary when moving to the west. Both factors lead to a mismatch between the different interpretations. This can be 404 observed in the velocity sections presented in Figure 9. In the east-west velocity sections there is also a similar effect, 405 although showing a better match between geological and tomographic delineation of this boundary as we move 406 eastward. The north-south sections show definitive evidence of this. Profile c-9i presents a good agreement between

both interpretations, note that this profile is practically aligned with boreholes SG-28, SVC-6 and SG-30. Conversely, section c-8i shows a clear discrepancy since it is located further to the west in relation to the c-9i profile.

410 The tomographic velocity model suggests the presence of a shallow weathered layer (warm colors in Figure 4). This 411 layer is clearly observed on the field, the surface mapping and the core samples recovered in most of the geotechnical boreholes. These observations show that this very shallow layer have two different lithologies that correspond to lutites 412 (LT) at the northern and western sector of the study area and also transition gypsum (Ytr) in the eastern sector (Figure 2 413 and 6). This upper weathered layer seems to be characterized by low velocity values though, from a seismic velocity 414 point of view, both lithologies are barely distinguishable. Furthermore, the guided interpretation of the tomographic 415 model is also unable to retrieve this layer basically due to the incompleteness of the sonic logs at shallow depths (only 416 417 downhole data in available for SVC-6) (Figure 6). This is specially significant for the weathered Ytr unit which has no 418 recorded data to estimate its seismic velocity at shallow surface. For this reason, in the guided interpretation this identified weathered layer has not been considered as a differentiated boundary. However, the surface geology offers a 419 perfect way to define the boundary associated between both lithologies in this upper weathered layer. Methodologically 420 421 it indicates that the direct mapping/correlation between velocity and lithology might not be applicable when the influence of other factors is relevant. Weathering affects the physical properties of the lithology that is outcropping, 422 423 decreasing velocities characteristic of the Ytr to values below 2100 m/s, the upper limit criteria used to identify the LT.

424

409

The imaging of the LT-Ytr transition cannot be accomplished using only the tomographic velocity model, according to 425 426 the borehole logging data available. More borehole logging data in representative locations of the velocity model are 427 needed to better constraint the velocity range assigned to each lithology, which in turn would enable to improve the 428 velocity ranges and reducing the standard deviations for each unit. A complete sequence for the sonic logs, from surface to the maximum depth, will be very useful to further constraint the weathered layer and maybe it could offer a clue to 429 430 differentiate at surface lutites from gypsum from a seismic velocity point of view. Nevertheless, seismic velocity alone seems to have some limitations to clearly define both lithologies or at least there is no a clear and unique distinctive 431 432 signature for these two lithologies. For this reason, we believed that adding other physical properties (e.g. resistivity or 433 porosity) could improve the definition of the LT-Ytr transition.

434

435 One of the main concerns is the presence of dissolution cavities within the evaporitic sequence, especially taking into 436 account the possible host of a singular infrastructure. In this sense, traveltime tomography is very limited in recovering 437 the location, geometry and velocity values expected for a cavity. Besides this is particularly more difficult if only 438 surface seismic data are used in the inversion (Flecha et al., 2004). In case of the presence of a cavity, the wavefront do 439 not propagate through it and the first arrivals are only capable to record the perturbation due to the large velocity 440 contrast at the edge of the velocity anomaly. Fortunately, the density ray diagrams revealed as an appropriate tool to 441 define the presence of cavities which is characterized by a very low or a lack of ray coverage. Taking into account this, 442 the analysis of the ray coverage diagrams derived from the traveltime inversion do not show any evidence of this fact 443 which implies that no cavities are characterized, at least at decametric scale (Figure 4, 5 and 7). Furthermore, the 444 extensive borehole campaign carried out on site also showed no evidence of the presence of cavities in the shallow 445 subsurface.

446

447 On the other hand, the presence of potentially active faults in the area is also a main issue in hazard analysis and risk 448 assessment. For this reason, the study of the presence of any non mapped minor fault and the characterization in depth 449 of mapped ones was also of interest. The study of instrumental and historical seismicity showed that the area was 450 tectonically stable with a very reduced amount of seismic events in the area and of very low magnitude. Furthermore 451 the paleoseismic studies by means of trenches revealed that does not exist any evidence of recent seismic activity related to any fault system. In the same way, the analysis of the tomographic velocity model supports these statements 452 453 about evidences of recent faulting responsible of any seismic activity that it could constitute any risk. The lithological 454 units imaged by the velocity models no not show any evidence of faulting which indicates that this sedimentary package 455 has not been affected by any recent activity (Figure 7, 8 and 9). This fact supports the evidences showed by other studies carried out in the area. 456

457 458

459 6. CONCLUSIONS

460

The detailed 3D structure of an evaporite sequence in the Villar de Cañas syncline (Cuenca) has been revealed by using high resolution shallow seismic tomographic inversion of first arrival traveltimes. The local tomographic image of the evaporite sedimentary sequence allows observing undulating structures in the base of the boundary layers. The tomographic Vp velocity model interpreted with the aid of additional geological and geophysical observations, such as Vp measurements from sonic logs and core description from boreholes provided a detailed mapping of the different lithologies that build up the sedimentary evaporite sequence. Additional constraints coming from sonic and gamma ray

logs were proven to be critical in the interpretation of the inverted velocity model, allowing identification of the detailed 467 468 features and geological structures at depth. Well logs and surface geology data allowed interpreting the different lithologies in the seismic image. The constraints used consisted in average Vp values and Vp ranges for the different 469 470 lithologies identified from the description of the core samples extracted from the boreholes. This provided the basis for 471 a pseudo-automatic (geophysically-driven) interpretation, where model cells were assigned to a specific lithology according to the Vp value of the corresponding node of the mesh. Despite the relatively complex structure and 472 473 composition of the target area, the guided interpretation scheme presented in this study results in a very powerful 474 procedure to extract structural information from velocity models. However, the consistency between the model and interpretation reduces its effectiveness when trying to resolve areas characterized by a high uncertainty in the guided 475 476 interpretation. This is particularly true for the uppermost layers where discrepancies can be accounted for by different 477 factors including: the irregular distribution of the boreholes and logging information; overlapping Vp values for 478 different lithologies/composition; the influence of physical conditions (pressure, temperature, water content). Therefore, 479 in those areas the direct mapping/correlation between velocity and lithology might not be applicable without the help of 480 other constraints, e.g. other geophysical parameters that can provide additional information to distinguish specific 481 lithologies.

482

483 Acknowledgments

484

485 This work has been supported by projects ref: CGL2014-56548-P, CGL2016-81964-REDE supported by the Spanish 486 Ministry of Science and Innovation, 2017 SGR 1022 Generalitat de Catalunya and, by ENRESA. The seismic data 487 recording system that consisted in 10 GEODE (Geometrics) was provided by the GIPP-GFZ Potsdam (Germany). The 488 acoustic energy used as source was generated by a 250 kg accelerated weight drop provided by the Instituto Superior 489 Tecnico, Univ. Lisbon, (Portugal) and a 90 kg accelerated weight drop provided by the Univ. of Oviedo, (Spain). The data is located at the data base server from the Institute of Earth Sciences Jaume Almera, ICTJA, CSIC 490 491 (http://geodb.ictja.csic.es/#dades1) We are very thankful to Dr. Christan Haberland, Dr. J.M. Gonzalez-Cortina and Prof. 492 J. Pulgar for their interest in the experiment and assistance during the field operations. We would also like to thank the 493 valuable comments of Dr. Juan Alcalde that significantly improved the final manuscript.

495	References
496	
497	Andara, E., Guillot, E., Carbonell, R., and García-Lobon, J.L: Constraining reflectivity in crystalline environment by
498	using multicomponent VSP data. 73rd European Association of Geoscientists and Engineers Conference and
499	Exhibition: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC: 4174-4178,
500	
501	Andrés, J., Alcalde, J., Ayarza, P., Saura, E., Marzán, I., Martí, D., Catalán, J.R.M., Carbonell, R., Pérez-Estaún, A.,
502	García-Lobón, and J.L., Rubio, F.M.: Basement structure of the Hontomín CO2 storage site (Spain) determined
503	by integration of microgravity and 3-D seismic data. Solid Earth, 7 (3): 827-841, doi:10.5194/se-7-827-2016,
504	2016. Alesla I. María I. Saver F. Marí D. Avarra D. Ishlin C. Dían Francía A. and Casharall D. 2D casharing
505	Alcalde, J., Marzán, I., Saura, E., Martí, D., Ayarza, P., Juhlin, C., Pérez-Estaún, A., and Carbonell, R.: 3D geological characterization of the Hontomin CO2 storage site, Spain: multidisciplinary approach from seismics, well-
506 507	logging and regional data. Tectonophysics, 627: 6-25, doi: 10.1016/j.tecto.2014.04.025, 2014.
508	Alcalde, J., Martí, D., Juhlin, C., Malehmir, A., Sopher, D., Saura, E., Marzán, I., Ayarza, P., Calahorrano, A., Pérez-
509	Estaún, A., and Carbonell, R.: 3-D reflection seismic imaging of the Hontomín structure in the basque-cantabrian
510	Basin (Spain). Solid Earth, 4 (2): 481-496, doi: 10.5194/se-4-481-2013, 2013a.
511	Alcalde, J., Martí, D., Calahorrano, A., Marzan, I., Ayarza, P., Carbonell, R., Juhlin, C., and Pérez-Estaún A.: Active
512	seismic characterization experiments of the Hontomín research facility for geological storage of CO2, Spain.
513	International Journal of Greenhouse Gas Control, 19: 785-795, doi: 10.1016/j.ijggc.2013.01.039, 2013b.
514	Alonso-Zarza, A.M., Calvo, J.P., Silva, P.G., and Torres, T.: Cuenca del Tajo. In: Geología de España, edited by Vera,
515	J.A., SGE-IGME, Madrid, 556-561, 2004.
516	Baumann-Wilke, M., Bauer, K., Schovsbo, N.H., and Stiller, M.: P-wave traveltime tomography for a seismic
517	characterization of black shales at shallow depth on Bornholm, Denmark. Geophysics, 77(5): EN53-EN60. doi:
518	10.1190/geo2011-0326.1, 2012.
519	Benz, H., Chouet, B. Dawson, P., Lahr, J., Page, R., and Hole, J.: Three dimensional P-and S-wave velocity structure of
520	Redoubt Volcano, Alaska. Journal of Geophysical Research, 101: 8111–8128, doi: 10.1029/95JB03046, 1996.
521	Bergman, B., Tryggvason, A., and Juhlin, C.: High resolution seismic traveltime tomography incorporating static
522	corrections applied to a till covered bedrock environment. Geophysics, 69(4): 1082-1090, doi:
523	10.1190/1.1778250, 2004.
524	Bergman, B., Tryggvason, A., and Juhlin, C.: Seismic tomography studies of cover thickness and near-surface bedrock
525	velocities. Geophysics, 71(6): U77-U84, doi: 10.1190/1.2345191, 2006.
526	Bernal, I., Tavera, H., Sulla, W., Arredondo, L., and Oyola, J.: Geomorphology Characterization of Ica Basin and Its
527	Influence on the Dynamic Response of Soils for Urban Seismic Hazards in Ica, Peru, International Journal of
528	Geophysics, vol. 2018, Article ID 9434251, 12 pages. Doi:10.1155/2018/9434251, 2018.
529	Biete, C., Roca, E., and Hernáiz-Huerta, P.P.: The Alpine structure of the basement beneath the southern Loranca Basin
530	and its influence in the thin-skinned contractional deformation of the overlying Mesozoic and Cenozoic cover.
531	Geo-Temas. 13, 173, 2012.
532	Bryś, K., Bryś, T., Ara-Sayegh, M., and Ojrzyńska, H.: Subsurface shallow depth soil layers thermal potential for
533	ground heat pumps in Poland, Energy and Buildings, Volume 165: 64-75, doi: 10.1016/j.enbuild.2018.01.015,
534	
535	Carbonell, R., Pérez-Estaún A., Maitínez-Landa, L., Martí, D., and Carretero, G.: Geophysical and geological
536	characterization of fractures within a granitic pluton. Near Surface Geophysics, 8 (3): 181-193, doi: 10.2007/1872.0004.2010002.2010
537 538	10.3997/1873-0604.2010002, 2010. Carmichael, R. S.: Practical handbook of physical properties of rocks and minerals: CRC Press, Inc., 1989.
539	Davis, T. L., Terrell, M. J., Benson, R.D., Cardona, R., Kendall, R.R., and Winarsky, R.: Multicomponent seismic
539 540	characterization and monitoring of the CO2 flood at Weyburn Field, Saskatchewan, The Leading Edge, 22(7):
541	696-697, doi: 10.1190/1.1599699, 2003.
542	De Vicente, G., and Muñoz-Martín, A.: The Madrid Basin and the Central system: A tectonostratigraphic analysis from
543	2D seismic lines, Tectonophysics 602: 259-285, doi: 10.1016/j.tecto.2012.04.003, 2013.
544	Diaz-Molina, M.: Geometry and lateral accretion patterns in meander loops: examples from the Upper Oligocene-
545	Lower Miocene, Loranca Basin, Spain: in Marzo, M., and Puigdefabregas, P., eds., Alluvial Sedimentation:
546	International Association of Sedimentologists, Special Publication 17: 115-131, 1993.
547	Diaz-Molina, M, and Muñoz-Garcia, M.B.: Sedimentary facies and three-dimensional reconstructions of upper
548	Oligocene meander belts from the Loranca Basin, Spain, AAPG Bulletin, V. 94, No. 2: 241-257,
549	doi:10.1306/07210909010, 2010.

Díaz Molina, M., and Tortosa, A.: Fluvial fans of the Loranca Basin, Late-Oligocene-Early Miocene, central Spain. In:
 Tertiary Basins of Spain, edited by Friend, P., and Dabrio, C., Cambridge University Press, 300-307, 1996.

- Escavy, J,I, Herrero, M.J., and Arribas, M.E.: Gypsum resources of Spain: Temporal and spatial distribution. Ore
 Geology Reviews, Volume 49: 72-84, doi: 10.1016/j.oregeorev.2012.09.001, 2012.
- Escuder-Viruete, J., Carbonell, R., Pérez-Soba, C., Martí, D., and Pérez-Estaún A.: Geological, geophysical and
 geochemical structure of a fault zone developed in granitic rocks: Implications for fault zone modeling in 3-D.
 International Journal of Earth Sciences, 93 (2): 172-188, doi: 10.1007/s00531-003-0378-z, 2004.
- Escuder Viruete, J., Carbonell, R., Martí, D., Jurado, M.J., and Pérez-Estaún A.: Architecture of fault zones determined
 from outcrop, cores, 3-D seismic tomography and geostatistical modeling: Example from the Albalá Granitic
 Pluton, SW Iberian Variscan Massif. Tectonophysics, 361 (1-2): 97-120, doi: 10.1016/S0040-1951(02)00586-3,
 2003.
- Festa, V., Tripaldi, S., Siniscalchi, A., Acquafredda, P., Fiore, A., Mele, D., and Romano, G.: Geoelectrical resistivity
 variations and lithological composition in coastal gypsum rocks: A case study from the Lesina Marina area
 (Apulia, southern Italy), Engineering Geology, Volume 202: 163-175, doi: 10.1016/j.enggeo.2015.12.026, 2016.
- Flecha, I., Carbonell, R., Zeyen, H., Martí, D., Palomeras, I., Simancas, F., and Pérez-Estaún A.: Imaging granitic plutons along the IBERSEIS profile. Tectonophysics, 420 (1-2): 37-47, doi: 10.1016/j.tecto.2006.01.019, 2006.
- Flecha, I., Martí, D., Carbonell, R., Escuder-Viruete, J., and Pérez-Estaún A.: Imaging low-velocity anomalies with the
 aid of seismic tomography. Tectonophysics, 388: 225-238, doi: 10.1016/j.tecto.2004.04.031, 2004.
- Giese, R., Henninges, J., Lüth, S., Morozova, D., Schmidt-Hattenberger, C., Würdemann, H., Zimmer, M., Cosma, C.,
 Juhlin, C., and CO2SINK Group: Monitoring at the CO2SINK Site: A Concept Integrating Geophysics,
 Geochemistry and Microbiology. Energy Procedia, Vol. 1, Issue 1: 2251-2259, doi:
 10.1016/j.egypro.2009.01.293, 2009.
- 572 Guimerà, J., De Vicente, G. and Rodríguez-Pascua, M.A.: La Rama Castellano-valenciana. In: Geología de España 573 (Vera, J.A., eds.). Sociedad Geológica Española e Instituto Geológico y Minero de España, pp. 610-612, 2004.

Guimerà, L. Rivero, R. Salas, A. Casas: Moho depth inferred from gravity and topography in an intraplate area (Iberian
 Chain), Tectonophysics, Volume 666: 134-143, doi: 10.1016/j.tecto.2015.10.021, 2016.

576 Guinea, A., Playà, E., Rivero, L., Himi, M., Bosch, R.: Geoelectrical classification of gypsum rocks. Surveys 577 Geophysics. 31 (6): 557-580, doi: 10.1007/s10712-010-9107-x, 2010

Heincke, B., Günther, T., Dalsegg, E., Rønning, J.S., Ganerød, G.V., and Elvebakk, H.: Combined three-dimensional
electric and seismic tomography study on the Åknes rockslide in western Norway, Journal of Applied
Geophysics, 70: 292-306, doi: 10.1016/j.jappgeo.2009.12.004, 2010.

- Hole, J.A.: Non-linear high-resolution three-dimensional seismic traveltime tomography. Journal of Geophysical
 Research, 97: 6553-6562, doi: 10.1029/92JB00235, 1992.
- Hole, J.A., and Zelt, C.: 3D finite differences reflection traveltimes. Geophysics, 121:427-434, doi: 10.1111/j.1365-246X.1995.tb05723.x, 1995.
- IAEA: Storage of Radioactive Waste Safety Guide IAEA Safety Standards Series No. WS-G-6.1 0608-Waste
 repositories STI/PUB/1254; (ISBN:92-0-106706-2); 55 pp., 2006.
- Juhlin, C., Giese, R., Zinck-Jorgensen, K., Cosma, C., Kazemeini, H., Juhojuntti, N., Luth, S., Norden, B., and Förster,
 A.: 3D baseline seismics at Ketzin, Germany: the CO2SINK project. Geophysics, Vol. 72, No.5: B121-B132.
 Doi: 10.1190/1.2754667, 2007.
- Kaufmann G., and Romanov D.: Geophysical observations and structural models of two shallow caves in
 gypsum/anhydrite-bearing rocks in Germany Geological Society, London, Special Publications, 466, 6, doi:
 10.1144/SP466.13. 2017.
- Kazemeini, H., Juhlin, C., and Fomel, S.: Monitoring CO2 response on surface seismic data; a rock physics and
 seismic modeling feasibility study at the CO2 sequestration site, Ketzin Germany. Journal of Applied
 Geophysics, Volume 71, Issue 4: 109-124, doi: 10.1016/j.jappgeo.2010.05.004, 2010.
- Kim, J.S., Kwon, S.K., Sanchez, M. and Cho, G.C.: Geological Storage of High Level Nuclear Waste. KSCE Journal
 Civil Engineering 15: 721. doi: 10.1007/s12205-011-0012-8, 2011.

598 Kissling, E.: Geotomography with local earthquakes. Review Geophysics 26: 659–698, doi: 599 10.1029/RG026i004p00659, 1988.

- Kissling, E., Ellsworth, W.L., Eberhart-Phillips, D., and Kradolfer, U.: Initial reference models in local earthquake
 tomography. Journal Geophysical Research, 99, 19635–19646, doi: 10.1029/93JB03138, 1994.
- Letort, J., Roux, P., Vandemeulebrouck, J., Coutant, O., Cros, E., Wathelet, M.,Cardellini, C., and Avino, R.: Highresolution shallow seismic tomography of a hydrothermal area: application to the Solfatara, Pozzuoli,
 Geophysical Journal International, Volume 189, Issue 3:1725 1733, doi: 10.1111/j.1365-246X.2012.05451.x,
 2012.
- Lévêque, J.J, Rivera, L., and Wittlinger, G.: On the use of the checker-board test to assess the resolution of
 tomographic inversions. Geophysical Journal International, 115: 313-318, doi: 10.1111/j.1365 246X.1993.tb05605.x, 1993.
- Malehmir, A., Schmelzbach, C., Bongajum, E.,Bellefleur, G., Juhlin, C., and Tryggvason, A.: 3D constraints on a
 possible deep >2.5 km massive sulphide mineralization from 2D crooked-line seismic reflection data in the
 Kristineberg mining area, northern Sweden, Tectonophysics, Volume 479, Issues 3–4: 223-240, doi:

- 612 10.1016/j.tecto.2009.08.013, 2009.
- Malehmir, M., Tryggvason, A., Lickorish, H., and Weihed, P.: Regional structural profiles in the western part of the
 Palaeoproterozoic Skellefte Ore District, northern Sweden, Precambrian Research, Volume 159, Issues 1–2: 1 18, doi: 10.1016/j.precamres.2007.04.011, 2007.
- Malehmir, A., Dahlin, P., Lundberg, E., Juhlin, C., Sjöström, H., and Högdahl, K.: Reflection seismic investigations in
 the Dannemora area, central Sweden: Insights into the geometry of polyphase deformation zones and magnetite skarn deposits, Journal Geophysical Research., 116: B11307, doi: 10.1029/2011JB008643, 2011.
- Martí, D., Carbonell, R., Escuder-Viruete, J., and Pérez-Estaún A.: Characterization of a fractured granitic pluton: P and Swaves' seismic tomography and uncertainty analysis. Tectonophysics, 422 (1-4): 99-114, doi:
 10.1016/j.tecto.2006.05.012, 2006.
- Martí D., Carbonell, R.R., Tryggvason, A., Escuder, J., and Pérez-Estaún, A.: Calibrating 3D tomograms of a granitic
 pluton. Geophysical Research Letters, 29 (17): 15-1-15-4, doi: 10.1029/2001GL012942, 2002a.
- Martí, D., Carbonell, R., Tryggvason, A., Escuder, J., and Pérez-Estaún A.: Mapping brittle fracture zones in three
 dimensions: High resolution traveltime seismic tomography in a granitic pluton. Geophysical Journal
 International, 149 (1):95-105, doi: 10.1046/j.1365-246X.2002.01615.x, 2002b.
- Martí, D., Carbonell, R., Flecha, I., Palomeras, I., Font-Capó, J., Vázquez-Suñé, E., Pérez-Estaún, A.: High-resolution
 seismic characterization in an urban area: Subway tunnel construction in Barcelona, Spain Geophysics, Vol. 73,
 No. 2: B41-B50, doi: 10.1190/1.2832626, 2008.
- Martinius, A.W., Geel, C.R., and Arribas, J.: Lithofacies characterization of fluvial sandstones from outcrop gamma-ray
 logs (Loranca Basin, Spain): the influence of provenance. Petroleum Geoscience, 8: 51-62, 1, doi:
 10.1144/petgeo.8.1.51, 2002.
- Muñoz-Martin, A., and De Vicente, G.: Cuantificación del acortamiento alpino y estructura en profundidad del extremo
 sur-occidental de la Cordillera Ibérica (Sierras de Altomira y Bascuñana), Revista Sociedad Geológica de
 España, 11(3-4): 233-252, 1998.
- Novitsky, C. G., Holbrook, W.S., Carr, B.J., Pasquet, S., Okaya, D. and Flinchum, B.A.: Mapping Inherited Fractures
 in the Critical Zone using Seismic Anisotropy from Circular Surveys. Geophysical Research Letters, 45. doi:
 10.1002/2017GL075976, 2018.
- Ogaya, X., Alcalde, J., Marzán, I., Ledo, J., Queralt, P., Marcuello, A., Martí, D., Saura, E., Carbonell, R., and
 Benjumea, B.: Joint interpretation of magnetotelluric, seismic, and well-log data in HontomÃn (Spain). Solid
 Earth, 7 (3): 943-958. doi:10.5194/se-7-943-2016, 2016.
- Paige, C.C., and Saunders, A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM
 Transactions on Mathematics Software, 8: 43-71, doi: 10.1145/355984.355989, 1982.
- Place, J., Malehmir, A., Högdahl, K., Juhlin, C., and Persson Nilson, K: Seismic characterization of the Grängesberg
 iron deposit and its mining-induced structures, central Sweden, Interpretation 3(3): SY41-SY56, doi:
 10.1190/INT-2014-0212.1, 2015.
- Piña-Varas, P., Ledo, J., Queralt, P., Roca, E., García-Lobón, J.L., Ibarra, P., and Biete, C.: Two-dimensional
 magnetotelluric characterization of the El Hito Anticline (Loranca Basin, Spain), Journal of Applied Geophysics,
 Volume 95:121-134, doi: 10.1016/j.jappgeo.2013.06.002, 2013.
- Rawlinson, N., and Spakman, W.: On the use of sensitivity test in seismic tomography. Geophysical Journal
 International 205: 1221–1243 doi: 10.1093/gji/ggw084, 2016.
- Samyn, K., Travelletti, J., Bitri. A., Grandjean, G., and Malet, J.P.: Characterization of a landslide geometry using 3D
 seismic refraction traveltime tomography, Journal of Applied Geophysics, 86:120-132, doi:
 10.1016/j.jappgeo.2012.07.014, 2012.
- 655 Seillé, H., Salas, R., Pous, J., Guimerà, J., Gallart, J., Torne, M., Romero-Ruiz, I., Diaz, J., Ruiz, M. Carbonell, R., and 656 Mas, R.: Crustal structure of an intraplate thrust belt: The Iberian Chain revealed by wide-angle seismic, soundings and gravity data, Tectonophysics, Volume 657 magnetotelluric 663: 339-353 doi: 10.1016/j.tecto.2015.08.027, 2015. 658
- Sopeña, A., and De Vicente, G.: Cordilleras Ibérica y Costero-Catalana, 5.1. Rasgos generales In: Geología de España,
 edited by Vera, J.A., SGE-IGME, Madrid, 467-470, 2004.
- Steeples. D.W: Engineering and environmental geophysics at the millenium. Geophysics, 66(1): 31-35, doi:
 10.1190/1.1444910, 2001.
- Tryggvason, A., Rognvaldsson, S.T. & Flovenz, O.G.: Three-dimensional imaging of the P- and S-wave velocity
 structure and earthquake locations beneath Southwest Iceland. Geophysal Journal International, 151: 848–866,
 doi: 10.1046/j.1365-246X.2002.01812.x, 2002.
- Tryggvason, A. and Bergman, B.: A traveltime reciprocity discrepancy in he Podvin and Lecomte time3d finite
 difference algorithm. Geophysical Journal International, 165: 432-435, doi: 10.1111/j.1365-246X.2006.02925.x,
 2006.
- Ugalde, A., Villaseñor, A., Gaite, B., Casquero, S., Martí, D., Calahorrano, A., Marzán, I., Carbonell, R., and PérezEstaún, A.: Passive seismic monitoring of an experimental CO2 geological storage site in Hontomín (Northern
 Spain) Seismological Research Letters, 84 (1), 75-84, doi: 10.1785/0220110137, 2013.

- Vegas, R., Vazquez, J.T., Suriñach, E., and Marcos, A.: Model of distributed deformation, block rotations and crustal
 thickening for the formation of the Spanish Central System. Tectonophysics, 184, 367–378, doi: 10.1016/0040 1951(90)90449-I, 1990.
- Vidale; J.: Finite-difference calculation of traveltimes. Bulletin of the Seismological Society of America, 78 (6), 2062–
 2076, 1988.
- Wadas, S. H., Tanner, D.C, Polom, U., and Krawczyk, C.M.: <u>Structural analysis of S-wave seismics around an urban</u>
 sinkhole: evidence of enhanced dissolution in a strike-slip fault zone. Natural Hazards and Earth System
 <u>Sciences</u>, 17: 2335-2350, doi: 10.5194/nhess-17-2335-2017, 2017.
- Witherspoon, P.A. Cook, N.G., Gale, JE: Gale Geologic storage of radioactive waste: field studies in Sweden. Science,
 Vol. 211, Issue 4485: 894-900, doi: 10.1126/science.7466363, 1981.
- Yao, Z.S., , Roberts, R.G., and Tryggvason, A.: Calculating resolution and covariance matrices for seismic tomography
 with the LSQR method, Geophysical Journal International, Volume 138, Issue 3: 886–894, doi: 10.1046/j.1365 246x.1999.00925.x, 1999.
- Yordkayhun, S., Juhlin, C., Giese, R., Cosma, C.: Shallow velocity-depth model using first arrival traveltime inversion
 at the CO2SINK site, Ketzin, Germany. Journal of Applied Geophysics, Vol. 63: 68-79.
 doi:10.1016/j.jappgeo.2007.05.001, 2007.
- Yordkayhun S., Juhlin C., and Norden B.: 3D seismic reflection surveying at the CO2SINK project site, Ketzin,
 Germany: A study for extracting shallow subsurface information. Near Surface Geophysics, Vol. 7, No. 2: 75-91,
 doi: 10.3997/1873-0604.2008036, 2009a.
- Yordkayhun, S., Tryggvason, A., Norden, B., Juhlin, C., and Bergmann, B: 3D seismic traveltime tomography imaging
 of the shallow subsurface at the CO2SINK project site, Ketzin, Germany. Geophysics Vol. 74, No. 1: G1-G15,
 doi: 10.1190/?1.3026553, 2009b.
- Zelt, C., Azaria, A., and Levander, A: 3D seismic refraction traveltime tomography at a groundwater contamination site. Geophysics, 71(5): H67-H78, doi: 10.1190/1.2258094, 2006.
- 696

697 Figure Captions

698

Figure 1. (a). Simplified geological map of the Iberian Range in eastern Iberian peninsula, with the location of the study area marked in black box, (modified from Guimerà et al. (2004). (b) Local geological map of the Villar de Cañas syncline. The target area is marked by a blue rectangle. The 2D seismic reflection profiles acquired in this experiment are also located in the map. (c) Detailed stratigraphic columns describing the main units observed in both flanks of the syncline.

704

Figure 2.Geometry of the acquisition experiment. Red dots are position of the source, white dots are the position of the
 receivers. Receivers consisted in single vertical component exploration geophones connected to an array of 10 GEODE
 (Geometrics) data acquisition system. Light blue dots indicate drilled boreholes. Weight drop (250 kg) used (from the
 Inst. Superior Tecnico Lisbon, Portugal)

709

Figure 3. Example of shot gather recorded by the array of 10 GEODES, 24 channels each. The red ticks indicate the traveltime picks of the firsts arrivals used as inputs for the tomographic inversion.

712

Figure 4. (a) 3D Seismic compressional wave velocity model (Vp) derived from the over 500.000 traveltime picks of the first arrivals in the shot gathers. The velocity range goes from nearly 900 m/s (reds) to over 4500 m/s (blues). (b) Comparison between the smoothly resampled Vp log derived from the sonic at borehole SVC-6 (light blue) and the vertical Vp profile extracted from the block at the location of the SVC-6 indicated by a black arrow in the block. The resampling of the log was carried out so that it would be comparable to the grid size used for the parametrization of the velocity model which in this case is of 10x10x5m.

719

720 Figure 5. Checker-board tests, synthetic recovery test taking into account the real acquisition geometry on a model 721 involving velocity anomalies of dimensions 75x50x25m, approximately. Checker-board analysis is a conventional 722 scheme to assess the resolution of the tomographic inversion approaches [Leveque et al., 1993; Rawlinson et al., 723 20154]. (a) Corresponds to a cross-section of the input synthetic velocity model consisting of box anomalies. (b) 724 Corresponds to a cross-section across the recovered velocity model. The best resolution is between 25 and 75 m. depth. (c) Corresponds to a depth slice (map view) across the input model showing the synthetic velocity anomalies (squares). 725 726 (d) Corresponds to a depth slice across the recovered velocity model at a 50 m depth. (e) Is the acquisition geometry, the 727 red line near the top corresponds to the location of the depth section of (a). In the cross sections and depth slices red 728 corresponds to low seismic velocity and blue to high values of the seismic velocities.

729

Figure 6. Drill-holes in the target area with the borehole geophysic logs used in this study. This reveals the correlation

between the rock samples, its description and the values of the physical properties, Gama ray (GR), sonic logs (Vp). The top part of the figure reveals the logging data with the correlation between the available boreholes. The bottom table defines the summary criterion used for the interpretation of the different lithologies. The Vp value should be representative of the corresponding lithologies. This criterion is used later in the text to differentiate between the different lithologies in the velocity cube obtained from the tomographic inversion. The left box illustrated the location of the boreholes within the acquisition geometry of the seismic survey, with the outcroping geology of the target area.

737 738

Figure 7. Velocity model grid of the shallow subsurface, it has been color coded according to the lithologies indicated in
the included scale/table which is the one derived in Figure 6. LT, Lutites; Ytr the gypsum-lutite transition layer; Y1 and
Y2, Gypsum units.

742

Figure 8, 3D Volume representations of the different lithologic units. LT, Lutites; Ytr the gypsum-lutite transition layer;
 Y1 and Y2, Gypsum units.

745

Figure 9. Resulting shallow subsurface structure represented as detailed cross-sections. Cross-sections integrate the velocity model derived from the tomography, the constraints provided by the boreholes and the extrapolation of surface geology data (in discontinuous drafted lines). Four different east-west and north-south cross-sections are showed with their locations within the study area. Note that towards the east (in the geological map), the Ytr outcrops at surface, as well as the Y unit. This revelas that the entire layered sequence dips to the west.

751

752

753

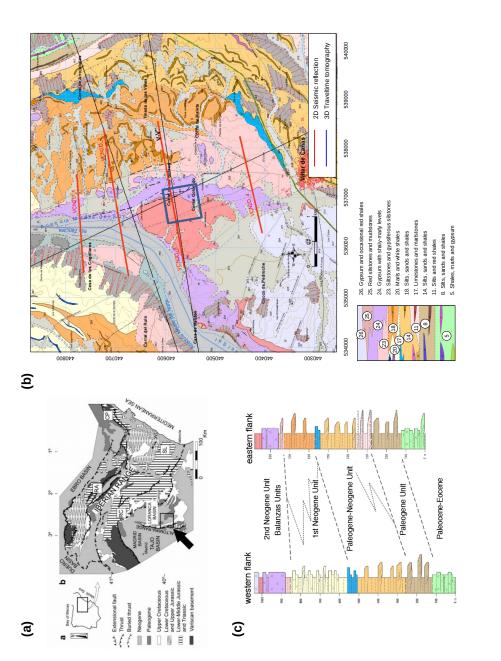
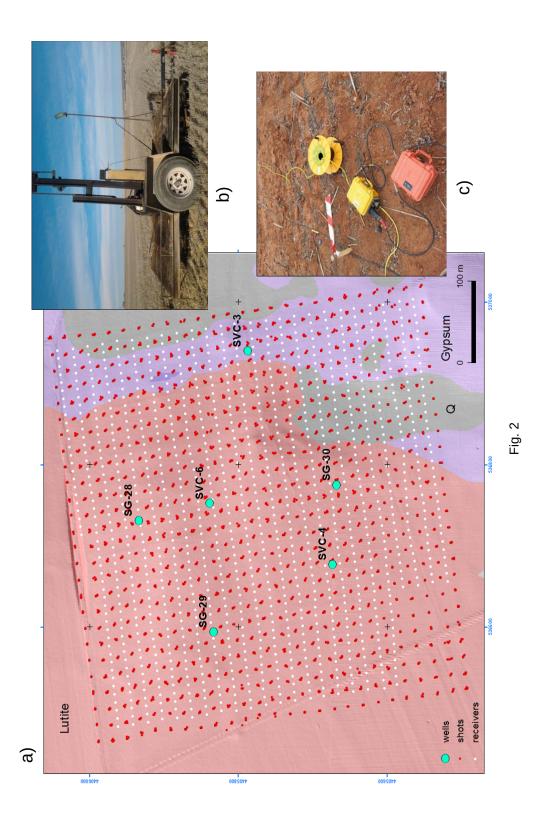



Fig. 1

17

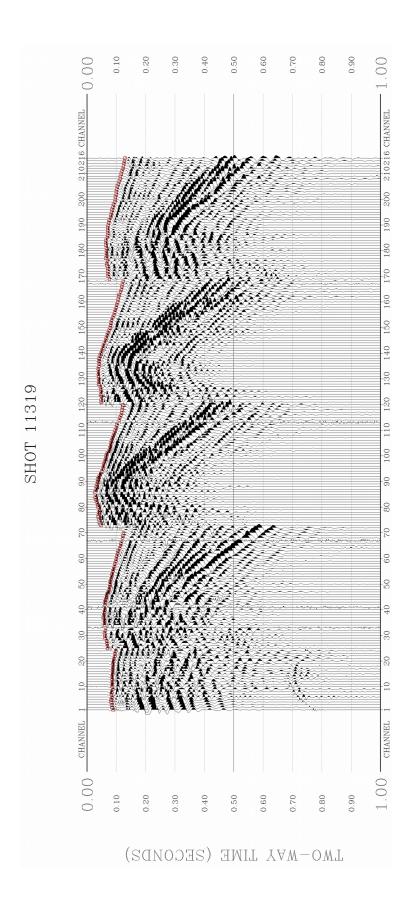
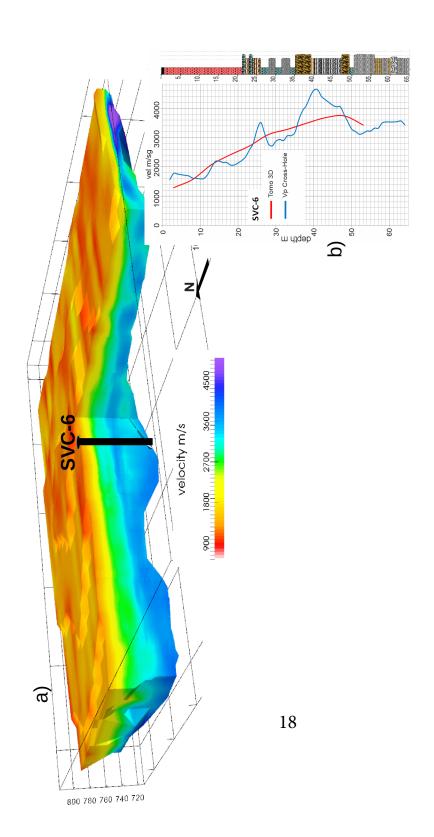
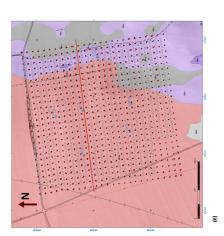



Fig. 3


Fig. 4

